Biotransformation of estragole by the plant cultured cells of Caragana chamlagu
نویسندگان
چکیده
Estragole (EG) is biosynthesized in herbs including anise, basil, bay, tarragon, fennel and marjoram, and is thought to be a useful biomass for the food and health industries. Moreover, the metabolites from estragole are useful intermediates in organic synthetic chemistry. However, estragole has been transformed only by chemical methods, and no biocatalysts have been reported. In this paper, we report the biotransformation of estragole using the plant cells of Caragana chamlagu gave 4-methoxycinnamaldehyde (MCAL), 4-methoxycinnamyl alcohol (MCA) and 4-methoxybenzaldehyde (MBAL). In addition, we propose a reaction mechanism in the biotransformation of estragole using Caragana chamlagu. Since estragole generates malignant liver tumors in the rat, it is necessary to reduce exposure. The present study reveals the transformation of harmful estragole. Furthermore, we succeeded in biotransforming estragole as biomass using plant cells into useful compounds.
منابع مشابه
The Effect of Culture System on Benzaldehyde Biotransformation by Cultured Cells of Silybum marianum (L.) Gaertn.
The abilities of Silybum marianum cell culture to biotransform benzaldehyde to benzyl alcohol in three culture systems were compared. Callus cultures of Silybum marianum were established from seedlings, and healthy suspensions and immobilized cultures grown on the Murashige and Skoog medium. S. marianum cells were immobilized in both agar beads and fiber cotton ...
متن کاملStereospecific Biotransformation of (±) Phenylethyl Propionate by Cell Cultures of Peganum harmala L.
The enzymatic potential of the cultured plant cells can be employed for bioconversion purposes. Plant enzymes are able to catalyze regio- and stereo-specific reactions, and therefore can be applied for the production of desired substances. The biotransformation of foreign substrates with suspension cells of Peganum harmala was tested with (±) phenylethyl propionate. The callus cultures of Pegan...
متن کاملBiotransformation of salicylaldehyde to salicin using Varthemia persica cell suspension cultures
Cell cultures of Varthemia persica DC. have been studied to evaluate their abilities in biotransformation of aromatic and aliphatic precursors. V. Persica (Asteraceae) is an aromatic plant growing in Iran. V. persica contain different terpens but its cell culture does not posses these compounds. Callus cultures of V. persica was established ...
متن کاملBiotransformation of Aromatic Aldehydes by Cell Cultures of Peganum harmala L. and Silybum marianum (L.) Gaertn.
Many aldehydes are important components of natural flavours. They are used in food, cosmetic, and biomedical industries in large amounts. Plant cells or microorganisms carry out their production by biotransformation, which is one of the biotechnological methods that allow them to be defined as 'natural'. Cell cultures of Silybum marianum and Peganum harmala have been studied with a view to in...
متن کاملBiotransformation of Aromatic Aldehydes by Cell Cultures of Peganum harmala L. and Silybum marianum (L.) Gaertn.
Many aldehydes are important components of natural flavours. They are used in food, cosmetic, and biomedical industries in large amounts. Plant cells or microorganisms carry out their production by biotransformation, which is one of the biotechnological methods that allow them to be defined as 'natural'. Cell cultures of Silybum marianum and Peganum harmala have been studied with a view to in...
متن کامل